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On a Shooting Algorithm for Sturm-Liouville Eigenvalue Problems
with Periodic and Semi-periodic Boundary Conditions
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This paper is concerned with the eigenvalues of Sturm-Liouville
problems with periodic and semi-periodic boundary conditions to be
approximated by a shooting algorithm, The proposed technique is
based on the application of the Floguet theory. Cenvergence analysis
and a general guideline to provide starting values for computed
eigenvalues are presemed. Some numarical results are also reported.
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L. INTRODUCTION

In many practical applications related to mathematical
physics and engineering science, very often the solutions of
Sturm-Liouville (SL) problems are required {cf. [3, 8, 15]).
Methods for compuling eigenvalues of SL equations have
been dealt with by many researchers in both theoretical and
numerical aspects (e.g., cf. [2, 4, 5, 14, 17]). From the
computational point of view, two methods arc commonly
used to solve the SL eigenvalue problems. They are the
shooting atgorithm and the finite difference method.

In a shooting algorithm, the solution of a boundary value
problem (BVF) is obtained by soiving a set of the related
initial value problems (1VPs). Note that a BVP is charac-
terized by the boundary conditions (i.e., the initial and final
value of the solutions) imposed at the two boundary points.
In contrast, the conditions (ie., the initial value and the
initial slope) of an IVP are specified at only one point.
By application of a shooting algorithm, the cigenvalue
of & BV is computed vinn numerical integration of the
associated IVPs with starting approximation. This techni-
que is usually applicd in conjunction with Newton's method
to seck the correcled eigenvalues. The major advantage of
this approach is that numerical methods for 1VPs are
well developed, and many efficient and reliable computer
programs are readily available in mathematical software
libraries such as the IMSL and the NAG.

In a finite difference method, the derivatives in the
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differential equations are replaced by finite differences.
Hence, the eigenvalues of a BVP are obtained by solving the
resulting algebraic eigenvalue problem.
In this paper, we consider the Sturm-Liouville equation:
—(p(r) 'Y +q(t) y = As(t} 3, 0gr<gm,

(1)

with the boundary conditions

0 =apw),  F(O0)=ay(w). (1.2)
Here a=1 corresponds to periodic and a= —~1 to semi-
periodic boundary conditions, and p'(¢), g(1), and s(¢) are
real-vaiued, piccewise continuous, and periodic with period
w. The functions p{t) and s(¢) are positive in [0, w]. Let
{4,} and {u,} be the eigenvalues of the SL equation with
periodic and semi-periodic boundary conditions, respec-
tively. It has been proven that the cigenvalues are ordered as
follows {cf. [97):

A<y S <A KA, < py<i €4,< . (1.3)

The popular method for the periadic or semi-periodic SL
eigenvalue problems (1.1)-(1.2) is the finite difference
method. However, the solutions of resulting matrix eigen-
problems require more work than those for problems with
separated boundary conditions (cf. [7, 10]). Moreover,
when eigenvalues 1,,’s are required for modest mi’s (e.g., in
scismology [[16]) one usually has Lo, even with asymptotic
correction technique [, use a matrix of very high order
(cf. [11]). An alternative way is lo employ the shooting
method. But when this technique is applied to the SL
equation, subject to periodic or semi-periodic boundary
conditions, not only starting values have to be prescribed,
but the initial values are also unknown, In [12], the author
exploited the monotone property of phrase function about
the eigenvalue parameter to handle this difficulty and conse-
quently extended the well-known Priifer method to periodic
cases. In this paper, we present another approach which is
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based on the Floquet theory of periodic differentiai equa-
tions. In this case, the initial conditions are always fixed
(cf. Section 2).

The format of this paper is organized as follows, The
development of a shooting algorithm for SL eigenvalue
problems with periodic or semi-periodic boundary condi-
tions is described in Section 2. Section 3 presents the
convergence analysis and a general guideline to provide
starting values. In Section4, the performance of the
shooting algorithm is illustrated by computational results.
Conclusions are given in Section 3.

2. FLOQUET THEORY AND A SHOOTING ALGORITHM

Consider the Sturm-Liouville eigenvalue problem with
periodic boundary conditions Eqs. (1.1) and (1.2). From
Floquet theory (cf. [9], Chap. 1]), it can be shown that
there exists a non-zero constant p and a non-trivial solution
y(t, A} such that

Wit 4o, )= py(t, 1), (2.1)
where « denotes the period. Tt is clear that p=1
corresponds to a periodic solution.

Now let ¢,(¢, ) and ¢.(¢, 1) be two linearly independent
solutions of the SL problem which satisfy the following
initial conditions:

(2.2)

Using the standard definition of the Wronskian, it gives

¢(0, 2)

¢:(0, 2)
3 $3(0, 4)

Wiy, #2000, 2) = 50, 1)

=1l

Since ¢ (7 + w, A) and ¢,(7 + w, 1) are also lincarly inde-
pendent solutions of the SL problem, they can be expressed
in the form

¢ (t+w, Ay=a,,¢,(t A)+a,8,(4 4),
¢t +w, A) =0y ¢,(1, A) +axnd, (i, 4),

where o, 2,2, &5, and a,, are constants. Using the initial

conditions given in Eq. (2.2}, it is easy to verify that
%y = ¢, 1), A2 =@, A),

i=1,2. (24)

Then the function ¥(z, 1) in Eq. (2.1) can be expressed as

Yt A)=c (8, £) + c25(1, 2), (2.5)

where either ¢, or ¢, can be zero, but not both zero.
Substituting Eqgs. (2.3} and {2.5) into Eq. (2.1} gives

((ay—p) ey +ogyc3) (1, 4)
+ (20 + (22— p) €3) Palt, A)=0.

Hence

(ayy —pley+ oz =0, (26)
%3¢y {2 —p) =0

Consequently the condition for a non-trivial solution is

P — (o) + oz3) p+ (ot oy — 5 05,) = 0. 27

By a basic result about the Wronskian [6], we have

Oy 0ag — Oyatlay = W(g,, d3)ew, 1)
=Wig,.$,)0, 2) o8 (pip)dt
=1.

Thus Eq. (2.7) becomes p® — (ot + 22} p + 1 =0.

Now denote

Diw, A)y=ay, +oyn=¢(w, )+, 2).  (28)

It can be shown that the necessary and sufficient conditions

for p=11is D(w, 4)= 2. Therefore the solutions of

D(w, A}y—2=0 29)

are identical to the eigenvalues of the SL problem with
periodic boundary conditions (1.2).

If 1 is a double root corresponding to two linearly
independent eigenfunctions, then there cxist two lincarly
independent solutions (c,, ¢,)7 of Eq. (2.6) such that

al2=0!2]=0. (210)
This condition implies that «,, = a5, = 1. Equation (2.10)
can be served as a criterion to test whether 4 is a double root
or not. Once the solutions (c,, ¢,} are found, the eigen-
functions (¢, 1) can be computed according to Eq. (2.5}.

Up to now our discussion has been focused on the SL
problem with periodic boundary conditions {i.e, p=1 in
Eq.(2.1)). If u is an eigenvalue for the SL problem with
semi-periodic boundary conditions, however, the same
argument previously presented will lead to the equation

Diw, u)+2=0 (2.11)
and, correspondingly, p = — 1 in Eq. (2.1). Equation {2.10)
is still valid for testing a double root for u.
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The original SL eigenvalue problem with periodic or
semi-periodic boundary conditions can now be cast into an
initial value problem (IVP). The following iterative algo-
rithm based on a shooting procedure in conjunction with
Newton’s method is then applied to solve the resulting IVP,
and hence gives the solution of the SL cigenvalue problem.

Suppose 4 is an eigenvalue of the SL problem with
periodic boundary condition, and let A%’ denote the kth
approximation to 4. The choice for the initial value 1'% will
be discussed in the next section. Then, for k=0,1, 2, ..,
until [R5+ — 2K g,

Step 1. Integrate numerically the system of the first-
order ODEs,
Yi=1Dra,
(py2) =—(A%s—q) y,,
P.V? q) Y1 (2.12)
Yii=Vaas
(py:,) = —(;L(HS— q) ¥i:—5V,
under the initial conditions
yi@y=1,  p(0)=0, . ;(0)=0,  »,;(0)=0.

Where y, =y and y, ;= 0dy/0/. Note that there are many
robust and efficient subroutines (such as the DO2NDF in
NAG) for integrating the IVPs. Let the solution be

yilow, A9 =c,, Yalw, )~(H)=Czs

(2.13)

Vo, AN =, Valw, 2(“)=c4.

Step 2. TIntegrate the system of ODEs (2.12) subject to
the initial conditions,

y1(0)=0, y1.:0)=0,  y;,(0)=0,

and let the corresponding solutions be

yl(ms ;'(k)) = dl Ll

_Vl,;.(we i(k)) =d;,

Yale, ":(k)) = d,,

(2.14)
y;__,-_(a), /‘L(kl) = d4.

Step 3. Update the (k+ 1}th approximation of the
eigenvalue A by the application of Newton’s formula
U1 _ g0k _ Diw, A%y —2
D'(w, ™))
=;vfkl_c_lﬁ_ (2_1'5)
c3+dy

It is worthwhile to mention that, instead of using the
formula explicitly stated in Eq. (2.15), a subroutine such as

the NEQNJ, which is an IMSL routine based on a modified
M. J. D. Powell’s hybrid algorithm, can be used to solve the
nonlinear equation. Note that the NEQNI subroutine is
essentially a variation of Newton’s method.

The iterative process is repeated until the difference
between two {or three) successive approximations A%+
and 1% is less than a prescribed tolerance ¢, and A%+ is
then accepted as an eigenvalue for the SL problem. If

leal + || |c2|+d,)
5,
a"( A

where 6> 0 is a given smail constant, 2*) and i***!} are
regarded as a double root.

The above iterative procedure can be applied in a
straightforward manner for p'®), the eigenvalue of the
SL problem with semi-periodic boundary conditions. The
modification required in the above iterative procedure is
replacing 4 by p and the equation D{w, 2*') —2=0 by
Diw, p*)+2=0.

3. CONVERGENCE AND CHOICE OF STARTING VALUES

Suppose the numerical errors due to integrating IVPs are
small and can be neglected. Since the iterative sequences
{A%% or {u'®} are obtained by the application of Newton-
type iteration, a sufficient condition of convergence and the
rate of convergence of the iterative procedure presented in
the last section then follow from Kantorovich’s results [ 13].

Consider

D{w, A)+2=0;
ie.,
$ila, 2) + ¢3(w, )£ 2=0.

Note that ¢,(w, 4) and ¢5(w, 4) are analytical functions of
4, and so is the function D{w, 2}.

Tueorem 1 (cf. [13]). Let A be the starting
approximation and let the subseguent approximations A%} be
computed via Newton’s formula in the shooting algorithm.
Suppose the following conditions:

(i} I[Die, 217" <B,

(i} [Diw, A €y —2, wheren =2,

(iii) | D;;(w, 2)| <k, for A€ 8(A', r), where r is defined
below,

are satisfied. Now, if

-2
li
>
%,
=3
A
2=
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and

14\/1—2)18”

¥

F2ry=

then the sequence { A} or {p™'} converges to an eigenvalue
A* or u* of the SL problem with periodic or semi-periodic
boundary conditions, such that

i*— A0 < rg

or

[* — #[O)| S F.

Moreover, the rate of convergence is characterized by the
inequality

| o 1
|4 = 2 < (2 > k=01, ..,
or
1
m*-#“"tsi,;(zwzk;—’, k=01, ...

The starting eigenvalues 4> and ¢ play an important
role in the success of the shooting algorithm. We now
examine how to choose 2% and u' for the iterative
procedure presented in the last section.

D()/DG)
'\

Let {4,} and {u;} be the eigenvalues of the SL problem
with periodic and semi-periodic boundary conditions,
respectively. Although Eq. (1.3) reveals the distribution of
the eigenvalues, more useful information could be obtained
from the following theorem.

THEOREM 2 [9] Let D{(A):= D{w, 4) be defined as in

Section 2, then
(i) D{A) =2 in the

(Zam i 15 Ao 4 2)s

(i1) D(A) decreases from 2 to —2 in the intervals
L4200 Bam 1

(iit} DA} < —2 in the intervals (L2, fom 4 1);

(iv) D(A) increases from —2 to 2 in the intervals
Ctamsts Az ).

intervals  (—oo, Ay) and

A typical graph of D(A) is plotted in Fig. 1. Assume that
the eigenvalues are ordered as Ay <po S <4 €h.< -+
We now present a strategy to compute the starting values
for (9 u@, i=0,1,2,... Suppose — ¥, the lowest bound
of the eigenvalues, can be determined such that — N < 4.
Let m be the index associated with the eigenvalue; the
starting eigenvalues can then be estimated according to the
following order: A, &, p'®, A9, A, .. Let h;,, denote
the step size which depends on m, and the subscript j that
could be either 0, 1, or 2. When 2§ is being sought, A, ,, is
used; &, is used in (A%, u¥7 or [u¥), . A%, 1] when

m

Hp

it -

s

FIG. 1.

S81/111/1-6

Eigenvalue distributions.
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the starting eigenvalues p!)! or A1)} | are sought; and 4, ,,
: : 0 0 Q 0 0

is aused in (A9) A5, ) or (uil. u ) for A2, or
ps? . Now define

x4 = x40 4 Kk (3.1)

Jomzy
where k=1, 2, ... Assuming that the values of x{* and #,,,
are given, the values of D(x!{*') can then be computed.
Suppose when &k = k*,

ID(x{7) - 21 <9, (3.2)
where d is a prescribed small positive constant, then x**' is
taken as the starting value as 2®, It is worth noting that
when searching for the starting value 2%°) for i=2m+ 1, it
may be possible that Eq. (3.2) is not satisfied but that

D(xs.k‘+1))£D(x£k*)). (3.3)

In this case, 4; and A, can be regarded as a double root

and the starting values (" and 1% are set to be

(0) _ 7(0) _ 17 tk*+1 £
A0 =2 = 3 (x Y+ x ),

The initial value of x® in Eq.(3.1) can be chosen as
follows. Suppose the first eigenvalue 4, is being sought, then
a natural choice for x' is —N. Hence, Eq. (3.1) becomes
x*)= —N+khq . Once A5 is computed, x = A" could
be used when the starting value u{ is being considered.
Having determined p, the values for 4{® can be computed
in a similar manner, and so on.

The strategy for the starting values presented in Eqs. (3.1)
and (3.2) requires the choices of 6 and 4, ,,, where j=0, 1,
or 2. In practice, one often does not know the best values for
& and h,,,, since it will vary from problem to problem,
depending upon the distribution of the eigenvalues. In this
paper, we suggest as a general guideline that J is taken in the
range from 0.1 to 0.5, A, ,, is a constant between S and 10,
hym=m?j2 and h,,,=m/2, where m is the index of the
eigenvalue.

4. NUMERICAL IMPLEMENTATION AND
COMPUTED RESULTS

The convergence analysis presented in the previous
section does not take into account the numerical errors
introduced in the integration process for solving the TVPs.
It is well known that for the SL problem the eigenfunction
associated with the eigenvalue 2, oscillates. Moreover,
for large m, the corresponding eigenfunction is highiy
oscillatory. Consequently, the TVPs may be very ill-condi-
tioned, resulting in inaccurately computed eigenvalues
when #1 is large.

In order to overcome this difficulty, the following scaling
procedure is implemented in Steps 1 and 2 of the iterative
process presented in Section 2. For simplicity, suppose
p(r)=11n Eq. (1.1) and denote the function

1

(1) == y(1), (1)

in which the scaling factor ¢ is defined as

c=[ max |As(t)—g(1)[]"".

O=sigsw

(4.2)

Now instead of Eq.(2.12) used in Step 1 of the iterative
algorithm, we integrate the system of ODEs,

i =c¢z,,
ro Y om
#h= —— (A5 —gq) zy,
c
4 —
D=0z,

?

1 1
-tk
4= ——{4f )S'_Q)zl,l—_szl-
c c

The corresponding initial conditions are replaced by

1 .
21(0)=E: 7,{0) =0, 21,4(0):0: z,,(0)=0.

Similarly, the scaled system (4.3) is used in Step 2, subject to
the initial conditions

z,(0)=0, 2(0)=~, z;:(0)=0, z,,(0)=0.

o —

We now present computational resulis to illustrate
the effectiveness of the shooting algorithm developed in
Section 2 for the Sturm~Liouville eigenvalue problems with
petiodic and semi-periodic boundary conditions. Let us
consider the following three different kinds of equations.

Problem 1. —y"=Ay, —1<t<1. The eigenvalues
corresponding to periodic boundary conditions are given by
Ap=0, Az i1 = Az =(m+1)2 77 for m=0.
The eigenvalues corresponding to the semi-periodic

boundary conditions are
mz0.

”2m=p2m+l =(2m+ 1)2 ﬁ2/4.‘ fOJ.’

Hence, all eigenvalues A; and u,, except 44, are repeated.
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TABLE 1

Eigenvalues for Problem |

mo A 4 i o e Hom
0 —050 0000000 —1.733x 1075 200 2467402 2467401
I 925 9.869606 9.869608 275 2467402 2467400
21000 9.869606 9869610  21.00 22206615 22206608
13850 39478426 30478426 2230 22206615 22206609
4 4000 39478426  39.478330  60.50 61.685040 61.685015
5 8625 B8.826458 88826483 6275 61.685040 61.685078
6 90.00 88826458  88.826484  118.00 120.902679 120.902748
7 15500 157.913703 157913544  121.00- 120.902679 120.902787
8 160.00 157913703 157913712 197.00 199.859531 199.859674
9 24275 246740161  246.739%03  200.75 199.859531 199.859442
10 249.00 246740161  246.740116
Problem 2. —y"=is(t) v, —1 <1< ], where

1, —1 <0,

s(t) =
{9, 0<r<1.

The exact solutions for this problem can be found in [9].
The eigenvalues corresponding to the periodic boundary
conditions are

Ao=0,

Agmar =[2m+ 1) 7 —a]?/4,
Aamaz=[(2m+ 1) n+a]%/4,
A3 = Agmya=(m+1)" 7,

where m=0, x=cos™'(}), and O<a<n/2. For the
semi-periodic boundary conditions, the eigenvalues u; are

Hap = (M + 3%
Ham 1 = (M + 377,
fam+2=[(m+ D m—3y]%
e s = [0m+ 1) 2~ 157%

TABLE It

Eigenvalues for Problem 2

(0] *

mo ALY b A I u £
0 —250 0000000 —1.141%10-'5 050 0322430 0322430
1 200 1737430 1.737424 100 0875964 0875964
2 300 13325067 3.325067 500  4.864952  4.864950
1900 9.869606 9.869526 700 6.624260 6624257
4 1100 9.869606 9869670 1400 13759812 13.759813
5 2000 19.889006  19.889041  17.00 16626188 16.626185
6 2450 24651917 24651850 2850 28.503154 28.593149
7 3850 39478426 30478829 3250 32665304 32665287
8 40.50 39478426 30477954 4800 45936408 46.936409
9 5800 S7.779795  S7.779888 5300 52115625 52115608
10 65.50 65717980  65.717887

TABLE III

Eigenvalues for Problem 3

) *

m A9 Phe Ao plf uk Hen
0 750 —5800046 —5.800046 550 —5790081 —5.790081
1 2.50 2.099460 2099460 —2.50 1.858188 1.858188
2 750 7449110 7.449110 9.50 9.236328 9.236327
3 1550 16648220 16.648212 11,50  11.548832  11.548832
4 1750 17096582 17.096582 2400 25510816 25510710
5 3450 36358867 30358743 2700 25549972 25.550027
6 37.50 36360900 36361011 46,50 49261383  49.261446
7 61.50 64198841 64.198831 5050  49.261455 49.261424
8 6550 04.198842 64.198816 78.00  81.156455 81.156485
9 9650 100.126369 100.126385 8200  BI.I56455 81.156435
10 101.50 100.126369 100.126355

where m>0, f=cos '((14./33)/16), y=cos '((1—
\/ﬁ )/16), and 0 < § <y < n. Therefore, some cigenvalues 4,
are distinct and some A, are repeated. The eigenvalues
corresponding to the semi-periodic boundary conditions,
however, are all distinct.

Problem 3. The Mathicu equation

Y4 (i—2gcos2t) y=0, —m2<i<n/2

The parameter g is set to be five for Problem 3. The eigen-
values corresponding to both periodic and semi-periodic
boundary conditions are all distinct. However, the value of
Agmsy OF Ha,, is very close to that of 4, ; or g, ., as m
increases (cf. [187).

The computational results for Problems 1, 2, and 3 are
summarized in the Tables 1, II, and III, respectively. The
strategy for the starting eigenvalues presented in Section 3 is
applied to compute A% and ‘. 1t should be pointed out
that the suggested values for & and £, ,, are used, except that
h,. . 15 set to be a constant unity for Problem 3. In the tables,
A, and p,, denote the computed eigenvalues, and A% and p¥
are the exact eigenvalues corrected to six decimal places.
The calculation was carried out in single precision on a
CYBER 860 computer. The tolerance £ in the iterative
algorithm is 107%,

5. CONCLUSIONS

A new shooting algorithm has been developed for the
Sturm-Liouville eigenvalue problems with periodic and
semi-periodic boundary conditions. From the numerical
results reported in the last section, we conclude that the
present technique is efficient and that the corresponding
eigenvalues can be accurately computed. However, it shouid
be pointed out that the good performance of this algorithm



80

depends upon the choice of the starting values. Although a
general guideline is given for the starting values, further

w

ork is needed so that the technique could be applied even

when information on the eigenvalue distribution is not
giver.
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